Действие электрического поля на процесс сгорания

Анализ традиционных путей тюнинга двигателя, рассмотренных выше, показывает, что их возможности или практически полностью исчерпаны, или связаны с существенным увеличением материальных затрат. Все названные пути направлены в основном на создание более благоприятных условий для процесса сгорания в двигателе или на исправление результатов, полученных в процессе сгорания, но сам процесс сгорания практически не затрагивают.

В этой связи в последние годы наметились достаточно новые направления, которые получают все более полное теоретическое и практическое подтверждение, - это применение в двигателях электрических и магнитных полей, а также электрических разрядов.

Известно, что ионы кислорода имеют очень высокую химическую активность. Однако попытки применения электрических разрядов, например, с целью ионизации воздушного потока при движении его по впускному тракту сколько-либо заметного результата с точки зрения улучшения сгорания пока что не дали. Основная причина этого кроется в том, что время существования ионизированных частиц кислорода значительно меньше, чем время, за которое эти частицы достигают цилиндра.

Наиболее перспективным из этих направлений представляется применение электрического поля высокой напряженности (ЭПВН) непосредственно в камере сгорания двигателя. Такая оценка основана на том, что ЭПВН позволяет эффективно воздействовать на процессы в цилиндре двигателя, благодаря чему создаются предпосылки для управления процессом сгорания.

Выполненные во второй половине XX века исследования показали, что существенную роль в процессе сгорания углеводородных топлив играет ионизация газов как во фронте пламени, так и в зоне продуктов сгорания. Кратко поясним суть ионизации и покажем, на чем основана возможность использования этого явления.

Ионизация газов требует существенных затрат энергии. Потенциалы ионизации большинства атомов и молекул углеводородных топлив находятся в пределах 4...20 эВ (электронвольт). При этом наименьшее значение потенциала ионизации (4,35 эВ) имеет атомарный углерод.

Из множества процессов, ведущих к ионизации, наиболее значимыми являются ионизация при столкновении, передача электрона, ионизация при передаче энергии возбуждения и хемоионизация. При горении углеводородных топлив имеют место все названные виды ионизации. Кроме того, многие возникающие в процессе сгорания частицы, способны образовывать отрицательные ионы. Поскольку реакции захвата электрона носят экзотермический характер, то имеет место диссипация энергии, что накладывает определенные ограничения на механизм реакций такого типа. Сходным с захватом электрона является процесс передачи заряда, который в случае реакции между ионами и молекулами может сопровождаться химической перегруппировкой.

Считается, что в случае столкновения молекул (частиц) с электронами ионизация молекул (частиц) начинается с момента, как только энергия электронов превысит потенциал ионизации. Максимальная эффективность ионизации для молекул CO, NO, O2, C2H2, H2 и других достигается при энергии электронов примерно 100 эВ.

В случае столкновения с атомами и ионами критическая энергия, при которой начинается ионизация, выше, чем в случае столкновения с электронами. При этом максимум ионизации наблюдается при энергиях порядка 103...104 эВ.

Типичные процессы горения характеризуются энергией от 0,1 до 1,0 эВ. Следовательно при этом столкновения частиц с электронами более эффективны, чем их столкновения с молекулами, вызывающие ионизацию.

Ионизация путем передачи энергии возбуждения имеет место, когда одна из цастиц отдает, а другая принимает энергию возбуждения, в результате чего принимающая частица ионизируется.

Хемоионизация возникает при химической перегруппировке, в результате которой выделяется энергия, вызывающая ионизацию исходных частиц. Химические реакции перегруппировки носят экзотермический характер, протекают с высокой скоростью и играют очень важную роль в реакционных зонах углеводородных пламен.

При сгорании углеводородных топлив сильное влияние на ионизацию пламени оказывает термоэлектронная эмиссия. Это явление возникает при высоких температурах, когда энергия электронов становится достаточной для того, чтобы они могли покинуть поверхность твердых частиц. В результате термоэлектронной эмиссии частицы приобретают положительный заряд. В углеводородных пламенах к таким частицам следует отнести, прежде всего, частицы углерода (сажи). При температуре 1880°С, характерной для камеры сгорания дизеля, вследствие эмиссии электронов с поверхности частиц углерода за время не более 10-3 мс создается равновесная концентрация электронов, достигающая 1010 электрон/см3.

Поскольку концентрация заряженных частиц в процессе сгорания очень высокая, представляется возможным воздействовать на эти частицы с помощью ЭПВН. При этом процесс эмиссии электронов с поверхности продуктов неполного сгорания, в том числе частиц углерода, интенсифицируется, что сопровождается увеличением их положительного заряда. Электроны, покинувшие частицы, устремляются к положительно заряженному электроду, и их равновесная концентрация не достигается. В свою очередь частицы, приобретшие в результате испускания электронов положительный заряд, устремляются к отрицательному электроду, увлекая при этом за собой и нейтральные частицы. Это явление известно под названием "электронного ветра Четтока" или электронного ветра.

Движение заряженных частиц вызывает появление объемной силы, действующей на нейтральный газ. Эта сила направлена в сторону движения положительно заряженных частиц, т.е. к отрицательному электроду. Максимальный эффект воздействия на процесс сгорания наблюдается при напряженности электрического поля, обеспечивающей наибольшую интенсивность электронного ветра. Возникающее под действием ЭПВН движение частиц турбулизирует пламя, в результате чего резко возрастает его поверхность и общая скорость сгорания топлива. Применительно к двигателю это означает, что за одно и то же время в камере сгорания можно сжечь значительно больше топлива и тем самым увеличить мощность двигателя. Наличие эффекта турбулизации пламени при воздействии на него ЭПВН подтверждено опытами.

Опыты проводились на открытом диффузионном пламени, образующемся при сгорании дизельного топлива. При этом варьировались форма электродов и величина подаваемого на них напряжения, что позволило также выявить влияние формы и напряженности создаваемого электрического поля на интенсивность процесса сгорания. Опыты позволили установить, что наибольший эффект турбулизации пламени возникает при действии электрическим полем на зону у основания фронта диффузионного пламени, где происходит образование заряженных частиц.

При этом эмиссия продуктов неполного сгорания в виде копоти, образуемой частицами сажи при отсутствии электрического поля, практически прекращается, что указывает на более полное выгорание топлива при наличии ЭПВН. В двигателе это неизбежно приводит к повышению его экономичности и уменьшению эмиссии продуктов неполного сгорания с ОГ. В дизеле, кроме того, турбулизация пламени гарантирует более качественное перемешивание паров топлива с воздухом. Это позволяет создать условия для полного сгорания поданного в цилиндр топлива при меньшем коэффициенте избытка воздуха и, возможно, отказаться от наддува при незначительном форсировании двигателя.

Наиболее эффективное влияние на процесс сгорания в цилиндре двигателя может быть достигнуто при условии, когда все зоны объема камеры сгорания находятся в электрическом поле одинаково высокой напряженности. Добиться выполнения этого условия можно путем придания положительному электроду формы, при которой его поверхность будет равноудалена от отрицательно заряженных поверхностей камеры сгорания при положении поршня в верхней мертвой точке. Этот вывод также подтвержден при моделировании геометрии камеры сгорания двигателя с помощью электродов различной формы.

Предлагаемое решение гарантирует эффективное влияние на процесс сгорания в двигателе как с внешним, так и с внутренним смесеобразованием. Однако при этом следует отдавать себе отчет в том, что реализация данного решения сопряжена с некоторым изменением конструкции головки цилиндров.

При проведении опытов было замечено также, что уменьшение общего количества образующихся сажистых частиц при воздействии на диффузионное пламя ЭПВН проявляется не только в уменьшении количества копоти, но и в сильном уменьшении свечения пламени. Последнее неизбежно связано с уменьшением его излучающей способности, что определенно скажется на уменьшении радиационного теплового потока к поверхностям камеры сгорания, который в современных дизелях может достигать 30% от суммарного теплового потока. Априорно можно утверждать, что уменьшение теплоотвода к деталям камеры сгорания за счет уменьшения радиационной составляющей будет более существенным, чем повышение теплоотвода за счет увеличения конвективной составляющей теплового потока из-за турбулизации процесса сгорания в результате воздействия ЭПВН.

Управление процессом сгорания с помощью ЭПВН

Примерная схема управления процессом сгорания с помощью электрического поля

Управление осуществляется следующим образом. При работе двигателя постоянное напряжение от аккумуляторной батареи 3 подается на регулятор постоянного напряжения 4, который в зависимости от количества подаваемой в камеру сгорания горючей смеси или топлива автоматически регулирует величину напряжения, подаваемого на преобразователь постоянного напряжения в переменное. Этим определяется амплитуда генерируемых импульсов напряжения, подаваемых на первичную обмотку повышающего трансформатора 6, и, следовательно, величина переменного высокого напряжения, поступающего со вторичной обмотки повышающего трансформатора на выпрямитель 7, преобразующий переменное напряжение в постоянное.

Далее высокое постоянное напряжение поступает в коммутатор 8, включающий высокое напряжение на положительный электрод 2 камеры сгорания 1 в соответствии с порядком работы цилиндров двигателя. Это исключает возможность короткого замыкания между клапанами и расположенным в камере сгорания положительным электродом 2 (при приближении к электроду клапанов в процессе очистки и наполнения цилиндров) и гарантирует наличие высокого напряжения на электродах той камеры, где происходит сгорание.

В случае 2-тактных двигателей с прямоточно-щелевой или петлевой продувкой цилиндров наличие коммутатора 6 не является обязательным, что существенно упрощает и без того достаточно простую схему управления.

Применение описанного устройства на двигателе позволяет достигнуть следующих основных результатов:

повысить мощность за счет увеличения количества сгораемого в камере топлива;

увеличить экономичность за счет снижения неполноты сгорания топлива;

уменьшить выброс продуктов неполного сгорания с ОГ в атмосферу за счет более полного выгорания топлива;

обеспечить полное выгорание топлива в дизеле при меньших значениях коэффициента избытка воздуха, за счет чего частично решить проблему необходимости наддува при незначительном форсировании двигателя.

Несомненными достоинствами двигателя, оборудованного названным устройством, является простота схемы управления, малые габариты устройства, не превышающие в целом габаритов аккумуляторной батареи, применение для его изготовления доступных деталей и незначительная потребляемая мощность устройства. © В.Н.Степанов "Тюнинг автодвигателей"